If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x+5=0
a = 10; b = -20; c = +5;
Δ = b2-4ac
Δ = -202-4·10·5
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{2}}{2*10}=\frac{20-10\sqrt{2}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{2}}{2*10}=\frac{20+10\sqrt{2}}{20} $
| 5x-3x-25+60=90 | | 5x-3x-25+60=120 | | 30+6=20+8x | | 5x-3x-25+60=110 | | -7(4n-3)+8n=-6n-7(n-6) | | 5x-3x-25+60=180 | | 1/2(2x)(x)=400 | | 15+h/3=17 | | 9x-10=28 | | -5x+9=33+7x | | 6(-x+2)=-6(-2+x) | | (x+9)(2x-7)-(x+9)^2=x^2-7x-144 | | 29–8x=45 | | m2–144=0 | | -5(4+3f)=-4(-2f+3) | | -9n+18=-3(-4+5n)+3(2n+2) | | 15-(2y-3)=0 | | 9x+8=3x+7 | | 2(-4v-8)=8+8(v-7) | | 1/5a-3=7a= | | 9x-13+x+23+90=180 | | 2n-3=-3+6n | | -(1+2n)=-8-2n | | 2x-68+90=180 | | -8-8n=2(-3n+1) | | 18x+21+19x+32+90=180 | | -6x+5=17= | | 8-5v=98 | | 5=x/8+2 | | -v-5v=-6v-3 | | (5+4p)(2)= | | 2x-12=8x+12 |